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Abstract
In the early stage of Alzheimer’s disease (AD), mild cognitive impairment (MCI) has a higher risk of progression to AD, 
so the prediction of whether an MCI subject will progress to AD (known as progressive MCI, PMCI) or not (known as 
stable MCI, SMCI) within a certain period is particularly important in practice. It is known that such a task could benefit 
from jointly learning-related auxiliary tasks such as differentiating AD from PMCI or PMCI from normal control (NC) in 
order to take full advantage of their shared commonality. However, few existing methods along this line fully consider the 
correlations between the target and auxiliary tasks according to the clinical practice of AD pathology for diagnosis. To deal 
with this problem, in this paper, treating each task domain as a different one, we borrow the idea from transfer learning and 
propose a novel multi-auxiliary domain transfer learning (MaDTL) method, which explicitly utilizes the correlations between 
the target domain (task) and multi-auxiliary domains (tasks) according to the clinical practice. Specifically, the proposed 
MaDTL method incorporates two key modules. The first one is a multi-auxiliary domain transfer-based feature selection 
(MaDTFS) model, which can select a discriminative feature subset shared by the target domain and the multi-auxiliary 
domains. In the MaDTFS model, to combine more training data from multi-auxiliary domains and simultaneously suppress 
the negative effects resulting from the irrelevant parts of multi-auxiliary domains, we proposed a sparse group correlation 
Lasso that includes a proposed group correlation Lasso penalty (i.e., ‖��‖2,1 ) and a proposed correlation Lasso penalty 
(i.e., ‖��‖1,1 ). The second module in MaDTL is a multi-auxiliary domain transfer-based classification (MaDTC) model that 
improves the voting with linear weighting-based ensemble learning. This model extends the constraints of the linear weighting 
method so that it can simultaneously combine training data from multi-auxiliary domains and achieve a robust classifier by 
minimizing negative effects from the irrelevant part of multi-auxiliary domains. Experimental results on 409 subjects from 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database with the baseline magnetic resonance imaging (MRI) 
and cerebrospinal fluid (CSF) data validate the effectiveness of the proposed method by significantly improving the clas-
sification accuracy to 80.37% for the identification of MCI-to-AD conversion, outperforming the state-of-the-art methods.
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Introduction

Alzheimer’s disease (AD) is a type of degenerative brain 
disease, which can be characterized by a decline in memory, 
language, problem-solving, and cognitive skills about eve-
ryday activities [1]. In clinical practice, it is of great impor-
tance to identify dementia at the stage of mild cognitive 
impairment (MCI) for timely diagnosis and intervention of 
AD. MCI can be further subdivided into progressive MCI 
(PMCI) and stable MCI (SMCI) based on its conversion 
to AD. A practical challenge for MCI identification is that 
not all cases of MCI will eventually progress to AD. Thus, 
accurate prediction of MCI progression (i.e., PMCI) is 
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fundamentally essential for timely therapy, disease-modi-
fying drug development, and possible delay of the disease. 
In recent years, many machine learning methods based on 
neuroimaging analysis have been proposed to recognize the 
early stage of AD [2–14]. For example, magnetic resonance 
imaging (MRI) scans [15–19] can measure structural brain 
atrophy and have been widely applied to the diagnosis of 
MCI [20]. Also, before the appearance of atrophy, the bio-
logical cerebrospinal fluid (CSF) levels of Aβ42, total tau 
(t-tau), and phosphorylated tau (p-tau) have also been con-
sidered effective biomarkers in tracking MCI progression 
[21–25]. Many studies have shown that the combination of 
imaging and biological biomarkers can achieve better diag-
nosis performances than the methods using only the single-
modal biomarker [9, 14, 26–31]. Accordingly, in this paper, 
we combine MRI and CSF biomarkers to identify the MCI-
to-AD conversion.

Recently, deep learning methods based on neuroimag-
ing data analysis have been used for the early diagnosis of 
AD [4, 8, 10, 32–35]. Although these deep learning-based 
studies can achieve better performances, the requirements 
of using a large training dataset and more powerful com-
putational devices will lead to certain limitations in some 
applications. Actually, available training samples are gen-
erally very small, while the dimensionality of sample fea-
tures is often very high, which makes it very challenging 
to train an accurate classifier model. This so-called small-
sample-size problem has been one of the main challenges in 
neuroimaging data analysis. To address this problem, some 
studies have proposed advanced feature learning methods 
to reduce feature dimensionality [2, 5, 6, 11–13, 27, 29, 30, 
36]. Feature selection methods are widely used in neuro-
imaging data analysis [6, 11, 27, 29, 30, 36–39]. Some of 
these studies have employed multi-task learning strategies 
for feature selection [11, 27, 29, 30, 37, 39], i.e., learning 
a common feature subset that can be well-generalized from 
a set of multi-task training data with a strong relationship 
among training data, e.g., multi-tasks sharing the same input 
data. On the other hand, transfer learning, especially domain 
adaptation strategy, can also be used to design feature selec-
tion or classification models in several recent studies [2, 
3, 6, 13, 30, 40]. The basic idea of transfer learning is to 
utilize the knowledge learned from one or more auxiliary 
domains to aid the learning task in the target domain, with 
the assumption that these auxiliary domains are related to 
the target domain. Different from multi-task learning, trans-
fer learning methods can somewhat relax the relationship 
required between target and auxiliary domains by explicitly 
handling the domain gap. Therefore, the transfer learning 
strategy is increasingly used in the early diagnosis of AD 
based on neuroimaging data analysis [2, 3, 6, 13, 30, 40]. 
In these studies on early diagnosis of AD based on transfer 
learning, some approaches focus on the instance-transfer 

approach that can work on new related datasets through 
training learning models on original dataset [3, 6, 40]; other 
studies focus on feature representation learning that can 
select a common set of features from the target domain and 
one or more related auxiliary domain(s) [2, 13, 30].

In this paper, we propose a learning framework that com-
bines the ideas from multi-task learning and transfer learn-
ing to produce an accurate and robust classifier to predict 
PMCI and SMCI subjects. In particular, we consider five 
auxiliary tasks (i.e., AD vs. normal controls (NC), AD vs. 
PMCI, AD vs. SMCI, PMCI vs. NC, and SMCI vs. NC) 
to aid the classification of PMCI and SMCI subjects. It is 
noted that each task has a different data domain with differ-
ent data distribution. We therefore further utilize transfer 
learning to explicitly handle the domain gap via requiring 
the model learned in the target domain to be close to those 
learned in the auxiliary domains, given the implicit relation-
ship between them. Compared with our previous works in [2, 
13, 30], the work in this paper improves the transfer feature 
selection model and the transfer classification model based 
on the concept of ensemble learning. More importantly, we 
explicitly consider the different correlations between the tar-
get domain and each auxiliary domain in our current work. 
Also, we aim to incorporate more data from multi-auxiliary 
domains to improve limitations in our previous work [13, 
30]. However, when more data from multi-auxiliary domains 
are used, the irrelevant parts among these auxiliary domains 
will impose a negative impact on the classification perfor-
mance. To solve this problem, we developed a novel multi-
auxiliary domain transfer learning (MaDTL) method, which 
can effectively incorporate more training data from multi-
auxiliary domains while mitigating the negative effects from 
several irrelevant parts of the auxiliary domains during the 
course of feature selection and classification.

In the proposed MaDTL model, we not only model the 
correlation between the target domain and multi-auxiliary 
domains based on the AD pathology but also improve the 
performance of conventional ensemble learning. Specifi-
cally, the proposed MaDTL method consists of two key 
modules. The first module is the multi-auxiliary domain 
transfer feature selection (MaDTFS). In this module, we 
propose a group correlation Lasso penalty (i.e., ‖��‖2,1 ) 
and a correlation Lasso penalty (i.e.,‖��‖1,1 ) as regular-
izers, which improve the conventional sparse group Lasso 
[41] for feature selection. By doing so, our MaDTFS model 
can effectively combine training data from multi-auxiliary 
domains as well as suppress the negative effects resulting 
from irrelevant parts of these domains. The second one 
is a multi-auxiliary domain transfer-based classification 
(MaDTC) model, which improves voting with the con-
ventional linear weighting-based ensemble learning. We 
extended the constraints of conventional linear weighting 
method and employed the hierarchical optimization-based 



Neurological Sciences 

1 3

[13, 30] grid search method to learn the optimized weight 
variable on training data. The MaDTC model can achieve 
a robust and accurate classifier by utilizing more auxiliary 
domains for training and minimizing the negative effects 
from the irrelevant parts of these domains. The proposed 
method is evaluated on the baseline Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database of 409 subjects 
with baseline magnetic resonance imaging (MRI) and CSF 
data. The experimental results demonstrate that the proposed 
method can further improve the diagnosis performance of 
MCI-to-AD conversion, compared with several state-of-the-
art methods.

Subjects and method

In this section, we first briefly introduce the experimental 
dataset from the ADNI database and then present our pro-
posed MaDTL method framework and the mathematical 
theory for MaDTL.

Subjects

In this paper, we evaluate our method on the baseline struc-
tural MRI and CSF data of 409 subjects extracted from the 
ADNI database. A more detailed description of ADNI can 
be found in [13]. The ADNI study assesses participants in 
the following four stages: NC (i.e., normal aging/cognitively 
normal), SMC (i.e., significant memory concern), MCI (i.e., 
mild cognitive impairment), and AD (i.e., Alzheimer’s dis-
ease). Since a new cohort is added to the ADNI database and 
denoted as ADNI2, the original ADNI database is denoted 
as ADNI1. In this work, we focus on using 409 subjects 
from the ADNI1 database with baseline MRI and CSF data. 
The 409 subjects include 102 AD subjects, 195 MCI sub-
jects, and 112 normal control (NC) subjects. Among all 195 
MCI subjects, during the 24-month follow-up period, 89 
MCI subjects converted to AD, which are denoted as PMCI 
for short, and 106 MCI subjects remained stable, which are 
denoted as SMCI for short. We used the baseline CSF Aβ42, 
t-tau, and p-tau data from the ADNI1 database. A more 
detailed description can be found in [14]. In this paper, CSF 
Aβ42, CSF t-tau, and CSF p-tau are used as the features.

Overview of method

In Fig. 1, we provide an illustration of our proposed MaDTL 
framework for the diagnosis of MCI-to-AD conversion. At 
first, all structural MRI images are preprocessed for extract-
ing features, and then these imaging-based features are con-
catenated with the CSF feature to form a new feature vec-
tor. The concatenated features are input into our proposed 
MaDTL framework for the classification of PMCI and SMCI 

subjects. Specifically, our transfer learning framework con-
sists of two main modules, i.e., (1) MaDTFS module, which 
uses data from the target domain (i.e., consisting of PMCI 
vs. SMCI subjects) and five auxiliary domains (i.e., con-
sisting of AD vs. NC, AD vs. PMCI, AD vs. SMCI, PMCI 
vs. NC, and SMCI vs. NC subjects, respectively) to form 
the training set and then learns the dimension-reduced 
feature vectors for the target and multi-auxiliary domains; 
and it should be noted that the PMCI and SMCI subjects 
in auxiliary domains are from the training set of the target 
domain; (2) MaDTC module, which uses the dimension-
reduced feature vectors output by the MaDTFS module as 

Multi-auxiliary Domain Transfer 

Feature Selection (MaDTFS)

Multi-auxiliary Domain Transfer 

Classification (MaDTC)

Multi-auxiliary Domain Transfer 

Learning (MaDTL) Framework

Preprocessing and 

Feature extraction

Concatenated MRI and CSF features

CSF dataMRI data

Fig. 1  Illustration of our proposed multi-auxiliary domain trans-
fer learning (MaDTL) framework for the diagnosis of MCI-to-AD 
conversion (e.g., PMCI vs. SMCI). First, all MRI data of 409 sub-
jects are preprocessed and features are extracted, and then these 
extracted features are concatenated with the original CSF feature to 
form a new feature vector. And then concatenated features are input 
into our proposed MaDTL framework for the classification of PMCI 
and SMCI subjects. The MaDTL framework includes two modules: 
(1) a MaDTFS model can combine data from the target domain and 
multi-auxiliary domains to select a discriminative feature subset; (2) 
a MaDTC model can achieve a robust classifier (PMCI vs. SMCI) 
by simultaneously combining data from the target domain and multi-
auxiliary domains
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the training data to learn support vector machine (SVM) 
classifier for each of the multi-auxiliary domains and the 
target domain, and output a final label vector. In order to 
properly utilize data from multi-auxiliary domains, we 
employ ensemble learning by voting with the linear weight-
ing method to compute a final vector of the predicted value. 
Combining the MaDTFS module with the MaDTC module, 
we call it MaDTL. It is worth noting that hyperparameters 
of the MaDTFS and MaDTL models should be optimized by 
performing the MaDTL module with nested tenfold cross-
validation on the current training data.

Image preprocessing and feature extraction

All structural MRI images are preprocessed by following the 
pipeline in the literature [14]. Specifically, the preprocessing 
flow is shown in Fig. 2. After registration, each subject’s 
MRI image is labeled into 93 regions of interest (ROIs). 
Then, for each of the 93 ROIs, we compute its gray matter 
(GM) tissue volume as a feature. As a result, for each sub-
ject, we have a 93-dimensional feature vector to represent 
it. To fuse MRI and CSF features, we simply concatenated 
them into a long feature vector.

Multi‑auxiliary domain transfer learning

To make use of the data from multi-auxiliary domains and 
simultaneously restrain negative effects from irrelevant 
parts of the multi-auxiliary domains, we propose a MaDTL 
model which simultaneously utilizes data from multi-aux-
iliary domains during the course of feature selection and 

classification. Specifically, as mentioned above, the pro-
posed MaDTL model consists of two modules: (1) MaDTFS 
module; and (2) MaDTC module. Significantly, in the pro-
cess of training the MaDTFS model, the PMCI and SMCI 
subjects in multi-auxiliary domains are from the training set 
of the target domain.

Multi‑auxiliary domain transfer feature selection (MaDTFS)

Inspired by sparse group Lasso [41] and fused sparse 
group Lasso [36], we propose the MaDTFS module, 
which can capture an informative set of common fea-
tures among data from both multi-auxiliary domains and 
the target domain. In the following subsections, we first 
introduce the formulation of MaDTFS and then employ 
the accelerated gradient descent (AGD) method [42, 
43] to solve the optimization problem of the proposed 
MaDTFS model.

Assume that we have training data from the target 
domain � = [�1, �2,… , �n]

T ∈ ℝ
n×d  , with the i-th ele-

ment �i ∈ ℝ
d×1 and its class label yi ∈ {+1,−1} , where n 

denotes the number of training samples from the target 
domain and d denotes the dimensionality of sample fea-
ture vectors. Then, � = [y1, y2,… , yn]

T ∈ ℝ
n×1 is the class 

label vector of the training set from the target domain 
� . Also, we have a group of training data from multi-
auxiliary domains 

{
�1,�2,… ,�k

}
 with the i-th auxil-

iary domain data matrix �i ∈ ℝ
ni×d and its class label 

vector �i = [yi,1, yi,2,… , yi,ni ]
T ∈ ℝ

ni×1 , where ni denotes 
the number of training samples from the i-th auxiliary 
domain and k is the number of auxiliary domains. It 
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correction [55]
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correction [59]

The skull stripping 

using the method [57]
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Fig. 2  The preprocessing flow of structural MRI images
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is noted that the dimensionality of feature vector d in 
the target domain is the same as that in each auxiliary 
domain. Therefore, some research employed the multi-
task learning method by group Lasso penalty to capture 
a common set of features [27, 29, 37, 39]. Specifically, 
multi-task learning based on the group Lasso pen-
alty (i.e., L2,1-norm regularization term) adopted data 
from the target domain and multi-auxiliary domains  
{
�,�1,… ,�k

}
 as well as a group of class label vectors 

{
�, �1,… , �k

}
 as training data and optimized the weight 

matrix � = [�1,�2,… ,�k+1] ∈ ℝ
d×(k+1) ( �i is the i-th 

column vector of the weight matrix � ) to learn a com-
mon set of features. Formally, the multi-task learning 
model based on the group Lasso penalty [44] is formu-
lated as:

where ‖�‖2,1 =
∑d

i=1

�
∑k+1

j=1
w2
i,j

 ( wi,j is an element of 
the weight matrix � ) is a group Lasso penalty, the first term 
in Eq. (1) is an empirical loss function of the training data 
from all domains, and 𝜆 > 0 is a regularization parameter 
controlling the group sparseness of the weight matrix �.

The group Lasso penalty of Eq. (1) tends to select fea-
tures based on the strength and the commonality of the 
features over both the target domain and multi-auxiliary 
domains, and thus cannot select a specific set of features 
for each domain. In order to simultaneously select domain-
specific features for multiple domains, several studies 
employed the multi-task learning-based sparse group 
Lasso penalty [41]. Formally, the multi-task learning-
based sparse group Lasso penalty [41] is formulated as:

where ‖�‖1,1 =
∑d

i=1

∑k+1

j=1

�
�
�
wi,j

�
�
�
 is well known as the 

Lasso penalty, and 𝜆1, 𝜆2 > 0 are regular ization 
parameters.

In the model of Eq. (2), the combination of Lasso and 
group Lasso penalties is also known as a sparse group 
Lasso penalty, which allows simultaneous joint feature 
selection for all domains as well as the selection of a spe-
cific set of features for each domain. On the other hand, 
the models of Eq. (1) and (2) implicitly assume that these 
domains have sufficient correlation and similarity, regard-
less of whether the correlation of each pair of domains 
has a difference. However, in our task, the correlation 
between the target domain and each auxiliary domain 
could be different. Inspired by fused sparse group Lasso 
[36], we improve the model of Eq.  (2) by introducing 

(1)min
�

k+1�

i=1

‖�i − �i�i‖
2
2
+ �‖�‖2,1

(2)min
�

k+1�

i=1

‖�i − �i�i‖
2
2
+ �1‖�‖1,1 + �2‖�‖2,1

new regularizers by explicitly handling the correlation 
information between the target domain and each auxiliary 
domain and propose the MaDTFS model. Formally, the 
MaDTFS model is formulated as:

Here, the last term 
∑d

i=1

�
∑k+1

j=2
(wi,1 − wi,j)

2  is a regu-
larizer to represent the correlation between the target 
domain and all auxiliary domains, which is called a group 
correlation Lasso penalty in this paper. This regularizer 
can keep features with correlation on both the target 
domain and all auxiliary domains, and we called these 
features domain-common correlative features. Since we 
consider that the correlations between the target domain 
and each auxiliary domain are different, those selected 
domain-specific features are very important and thus we 
proposed a second term 

∑d

i=1

∑k+1

j=2

�
�
�
wi,1 − wi,j

�
�
�
 . The regu-

larizer is called a correlation Lasso penalty. The combina-
tion of group correlation Lasso and correlation Lasso 
penalties is called a sparse group correlation Lasso pen-
alty, which can select those united features, i.e., both 
domain-common correlative features and domain-specific 
correlative features, and simultaneously restrain negative 
effects from several irrelevant auxiliary domains. For 
clarity, we illustrate the process of the MaDTFS model to 
learn an optimized weight matrix � in Fig. 3 and then 
acquire discriminative features via the optimized weight 
matrix �.

To conveniently solve the optimization problem of the 
MaDTFS model, the model of Eq. (3) can be expressed as:

where � ∈ ℝ
(k+1)×k is a (k + 1) × k is a sparse matrix and 

defined as follows: hi,j = 1 if i = 1 ( hi,j is an element of the 
sparse matrix � ), hi,j = −1 if i = j + 1 , and hi,j = 0 otherwise. 
By minimizing Eq. (4), we can learn a converged � from 
the target domain and multi-auxiliary domains, and then the 
elements of the optimized weight matrix � will be zero. For 
feature selection, we just keep those features with nonzero 
weights.

To solve the optimization problem of Eq. (4), we employ 
the accelerated gradient descent algorithm [42, 43]. To be spe-
cific, we decompose the objective function F(�) in Eq. (4) 
into two parts, i.e., a differential term L(�) and a non-differ-
ential term R(�) , as follows:

(3)min
�

k+1�

i=1

‖�i − �i�i‖
2

2
+ �1

d�

i=1

k+1�

j=2

�
�
�
wi,1 − wi,j

�
�
�
+ �2

d�

i=1

�
�
�
�

k+1�

j=2

(wi,1 − wi,j)
2

(4)min
�

k+1�

i=1

‖�i − �i�i‖
2
2
+ �1‖��‖1,1 + �2‖��‖2,1
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Then, we define the generalized gradient update rule as 
follows:

(5)

L(�) =
∑k+1

i=1
‖�i − �i�i‖

2
2
,R(�) = �1‖��‖1,1 + �2‖��‖2,1

F(�) = L(�) + R(�)

(6)
Q
�
�,�t

�
= L

�
�t

�
+ tr

��
� −�t

�T
∇L

�
�t

��

+
1

2
‖� −�t‖

2

F
+ R(�)

In addition, we set q
(
�t

)
 as the following:

Specifically, we summarize the details of the AGD 
method for the optimization problem of the MaDTFS model 
in Algorithm 1.

(7)q
(
�t

)
= argmin

�
Q
(
�,�t

)

... ... ... ... ... ...

Data matrix 
Target domain

PMCI vs. SMCI
Class label vector 

Data matrix Auxiliary domain

AD vs. NC
Class label vector 

Auxiliary domain

AD vs. PMCI
Data matrix Class label vector 

Auxiliary domain

AD vs. SMCI

Auxiliary domain

PMCI vs. NC

Auxiliary domain

SMCI vs. NC
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Data matrix 

Data matrix 

Class label vector 

Class label vector 

Class label vector 

M
aD

TFS

= [ , , … , ] ×( )

Domain 

Weight matrix

F
eatu

re 
Training data

Fig. 3  Illustration of the MaDTFS model for selecting the discriminative features on training data from the target domain and multi-auxiliary 
domains. It is worth noting that the PMCI and SMCI subjects in multi-auxiliary domains are from the training set of the target domain

Training samples 

AD vs. NC

AD vs. PMCI

AD vs. SMCI

PMCI vs. NC

SMCI vs. NC

PMCI vs. SMCI PMCI vs. SMCI

PMCI vs. SMCI

PMCI vs. SMCI

PMCI vs. SMCI

PMCI vs. SMCI

Testing samples 

SVM

= ( )

=∑

PMCI vs. SMCI

SVM

SVM

SVM

SVM

SVM

Predicted values

+

Fig. 4  Illustration of the multi-auxiliary domain transfer classification 
(MaDTC) model for classification on training data from the target 
domain and multi-auxiliary domains and testing data only from the 
target domain. In the process of MaDTFS, we have acquired a group 
of the most discriminative features to reduce the dimension of train-
ing and testing samples. To make better use of data from multi-auxil-
iary domains, we train the six SVM models on training data from the 

target domain and five auxiliary domains of feature reduction, then 
we apply the six learned SVM to test testing samples from the target 
domain and acquire six vectors of predicted value ( d1, ..., d6 ). Finally, 
we employ voting with the linear weighting method to compute a 
final vector of predicted value d and acquire a final classification label 
vector of testing samples y
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reducing the dimension of training and testing samples, 
upon which we will build a MaDTC for the final classifi-
cation. In Fig. 4, we provide an illustration of the MaDTC 
model for the final classification. Inspired by the technique 
of transductive transfer learning [45, 46], we developed 
the MaDTC model in order to properly utilize the dimen-
sion-reduced training data from multi-auxiliary domains. 
Specifically, there are three steps to compute the final class 
label of testing samples. In the first step, we treat data 
from each auxiliary domain and target domain as a train-
ing set in turn, while the testing set is the same and from 
the target domain. In the second step, we train a SVM 
classifier with the training set, then get k + 1 SVM clas-
sifier models, and output k + 1 groups of predicted value 
vectors. We denote the k + 1 groups of predicted value 
vectors as 

{
�i

}k+1

i=1
 . Finally, in order to achieve better clas-

sification performance, we employ ensemble learning by 
voting with the linear weighting method to combine these 
k + 1 vectors of the predicted value. Formally, the voting 
with linear weighting method to fuse the k + 1 groups of 
predicted value vectors is formulated as:

where the learnable variable wi is the weight correspond-
ing to the i-th vector of predicted value �i , � is a final vector 
of predicted value, and a hierarchical optimization method-
based [13, 30] grid search is employed to learn the optimized 
weight variables wi in training the MaDTL model. Then, 
we directly call the sign function to compute the final clas-
sification label vector of testing samples � (i.e.,� = sign(�)).

To achieve better classification performance, we con-
strain the weights to be 

∑k+1

i=1
wi = 1 and −1 ≤ wi ≤ 1 . There 

is a reason that we constrain the weight wi . Specifically, in 
data from multi-auxiliary domains, usually, there are one 
or more auxiliary domains that can be weakly correlative 
or irrelevant to the target domain, so if we directly use the 
voting with linear weighting method in conventional ensem-
ble learning, we may have the negative transfer effect on 

(11)� =

k+1∑

i=1

wi�i

To solve the generalized gradient update efficiently, 
according to [42], q

(
�t

)
 in Algorithm 1 can be rewritten as

Setting � = �t − �∇L
(
�t

)
 , Eq. (8) can be expressed as

where �i and�i denote the i-th row vector of the matrix 
�,� , respectively. Therefore, Eq. (8) can be decomposed 
into d separate subproblems of dimension k + 1.

For each subproblem of Eq. (9):

Inspired by solving the proximal operator associated 
with the fused sparse group Lasso [36], solving the optimi-
zation problem of Eq. (10) is presented in Algorithm 2. It 
is worth reminding that the vectors w, u, z are row vectors 
in Algorithm 2 and Eq. (9).

According to Algorithm 1 and Algorithm 2, incorporating 
the research work of [36], the optimal solution � can be eas-
ily obtained. And then, the optimized weight matrix � can 
be used to select the most discriminative features. Specifi-
cally, we select those features corresponding to the nonzero 
rows in the first column of the optimized weight matrix �.

Multi‑auxiliary domain transfer classification

After performing the process of MaDTFS, we have 
acquired a group of the most discriminative features for 

(8)q
�
�t

�
= argmin

�

�
1

2
‖� −

�
�t − �∇L

�
�t

��
‖
2

F
+ �1‖��‖1,1 + �2‖��‖2,1

�

(9)

q
�
�t

�
= argmin

�

�
1

2
‖� − �‖2

F
+ �1‖��‖1,1 + �2‖��‖2,1

�

= argmin
�1,…,�d

∑d

i=1

�
1

2
�
��

i − �
i�
�
2

2
+ �1

�
��

i
��
�1 + �2

�
��

i
��
�2

�

(10)min
�

1

2
‖� − �‖2

2
+ �1‖��‖1 + �2‖��‖2



 Neurological Sciences

1 3

classification performance of target domain. Different from 
conventional ensemble learning, those weak correlative or 
irrelevant auxiliary domain data can be used for learning 
performance improvement of the target domain in transfer 
learning. According to the pathology of AD, we consider 
that correlations between target domain and each auxil-
iary domain have different, and a few irrelevant auxiliary 
domains often exist in all auxiliary domains but these irrel-
evant auxiliary domains may result in negative effects on 
classification performance. To avoid negative effects from 
irrelevant auxiliary domains, we extend the restricted con-
dition of conventional voting with linear weighting method 
and set the range of the weight wi as between − 1 and 1.

Hierarchical optimization method for hyperparameter 
learning

In the subsections “Multi-auxiliary domain transfer feature 
selection (MaDTFS)” and “Multi-auxiliary domain trans-
fer classification,” we have described in detail our proposed 
MaDTL method and its components (i.e., MaDTFS and 
MaDTC). However, we do not describe how to use our pro-
posed MaDTL method for the diagnosis of MCI-to-AD con-
version in real-world applications. In order to more visually 
understand the process of training and testing our proposed 
MaDTL method for diagnosis of MCI-to-AD conversion, 
we provide an illustration for showing this process in Fig. 5.

In Fig. 5, there are three steps to training and testing the 
MaDTL model. Firstly, we use a tenfold cross-validation 
strategy to partition the target domain (i.e., 195 subjects of 
PMCI and SMCI) samples into training and testing subsets; 
these training samples from the target domain are added to 
214 AD and NC samples and then form five auxiliary learn-
ing tasks. Secondly, to search reasonable values of hyperpa-
rameters for the MaDTFS and MaDTC models, we employ 
a hierarchical optimization method-based [30] grid search 
to search the optimized regularization parameters ( �1, �2 ) 
and weight variables wi . Specifically, for each fold of train-
ing samples from the target domain, we again employ the 
tenfold cross-validation (i.e., nested tenfold cross-validation) 
strategy to partition the current training samples from the 
target domain and combine auxiliary domain samples into a 
new set of training samples, then we perform the hierarchical 
optimization method-based grid search for hyperparameter 
learning. Thirdly, through hyperparameter learning, these 
optimized hyperparameters ( �1, �2,w1,… ,w6 ) have been 
acquired then input into the MaDTL (MaDTFS + MaDTC) 
model and obtain a group of performance measures (ACC, 
SEN, SPE, and AUC) on each fold. Through performing ten-
fold cross-validation, we obtain ten groups of performance 
measures and then compute the mean value of all groups of 
performance measures. It is worth noting that we perform 

this process of tenfold cross-validation 10 times in random 
order and report the average of all performance measures 
(ACC, SEN, SPE, and AUC).

The hierarchical optimization method-based grid search 
is employed to search for more optimal hyperparameters of 
the MaDTL model. Specifically, there are two regulariza-
tion parameters (i.e., �1, �2 ) in the MaDTFS model and six 
weight parameters (i.e., w1,w2,w3,w4,w5,w6 ) in the MaDTC 
model. Firstly, we use the grid search method to optimize 
the first regularization parameter �1 , while we fix default 
values for other rest parameters and acquire the optimized 
parameter �1 . Then, we use the grid search method to opti-
mize the parameter �2 with the optimized parameter �1 and 
the fixed default values for other rest parameters. All hyper-
parameters are optimized one time, which is an iteration for 
the hierarchical optimization method-based grid search. In 
general, through multiple iterations, the performance meas-
ures would converge, and we set the number of iterations as 
a constant.

Experimental settings

The classification of PMCI and SMCI subjects is the target 
domain in our task, i.e., PMCI (+ 1) vs. SMCI (− 1) classifi-
cation. In addition, we further consider five binary classifica-
tion tasks as auxiliary domains, i.e., AD (+ 1) vs. NC (− 1) 
classification, PMCI (+ 1) vs. NC (− 1) classification, AD 
(+ 1) vs. PMCI (− 1) classification, SMCI (+ 1) vs. NC (− 1) 
classification, and AD (+ 1) vs. SMCI (− 1) classification, to 
improve our ultimate task of PMCI and SMCI classification. 
In order to avoid the possible bias that occurred during sam-
ple partitioning, a tenfold cross-validation strategy is used to 
partition the target domain data into the training and testing 
subsets in all experiments. In the tenfold cross-validation, we 
train and test our model 10 times in random order and report 
the average performances in terms of area under the receiver 
operating characteristic curve (AUC), accuracy (ACC), sen-
sitivity (SEN), and specificity (SPE).

We compare the proposed MaDTL method with the 
standard SVM (denoted as SVM) and other state-of-the-
art methods, including those using multi-task learning 
and transfer learning. These methods are as follows: (1) 
MKSVM [14], (2) MTFS [37], (3) cFSGL [36], (4) Lasso 
[47], (5) sgLasso [41], (6) rMLTFL [2], and (7) MDTL [13]. 
Experiment settings of these methods are listed as follows.

SVM: The training data are only from the target domain, 
without any feature selection stage. The linear SVM with 
C = 1 is used as the classifier.

MKSVM: The training data are only from the target 
domain. According to the study of [14], we do not simply 
concatenate the features of MRI and CSF into a long fea-
ture vector; instead, we adopt the multi-kernel learning to 
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combine the features of MRI and CSF. All experiment set-
tings proceeded in strict accordance with the study of [14]. 
More details can be found in [14].

MTFS: Multi-task Lasso feature selection (MTFS) is 
employed in the study of [37]. The training data are from 

both the target domain and multi-auxiliary domains, and the 
MTFS algorithm is conducted for feature selection before 
using linear SVM for classification.

cFSGL: Convex fused sparse group Lasso (cFSGL) is 
proposed in the study of [36]. The training data are from 

MaDTL

89 PMCI samples

106 SMCI samples

10-fold 
cross-validation

Training set 1         Testing set 1 Training set 2 Testing set 2 ... Training set 10 Testing set 10

Nested 10-fold 
cross-validation

Nested 10-fold 
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Nested 10-fold 
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...

MaDTFS

MaDTC

Hyper-parameters learning

Optimized hyper-parameters
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214 subjects

Fig. 5  Illustration that shows the process of training and testing of 
our proposed MaDTL method for the classification of PMCI and 
SMCI subjects. The abbreviations of “training set” and “testing set” 
are “Tr_set” and “Te_set,” respectively. Hyperparameter learning is 
that we use the hierarchical optimization method-based grid search 

to search the optimized hyperparameters of MaDTFS and MaDTC 
on training data. The area under the receiver operating characteris-
tic curve (AUC), accuracy (ACC), sensitivity (SEN), and specificity 
(SPE)
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both the target domain and multi-auxiliary domains. The 
cFSGL method is used for feature selection and then linear 
SVM is used for classification.

Lasso: The training data are only from the target domain, 
and the L1-norm-based feature selection is performed before 
classification. Finally, a linear SVM is used for classification.

sgLasso: Sparse group Lasso (sgLasso) is proposed in 
the study of [41]. The training data are from both the tar-
get domain and multi-auxiliary domains, and the sgLasso 
method is used for feature selection and then a linear SVM 
is used for classification.

rMLTFL: Robust multi-label transfer feature learning 
(rMLTFL) is proposed in the study of [2]. The training 
data are from both the target domain and multi-auxiliary 
domains. The rMLTFL method is used for feature selection 
and then linear SVM is used for classification.

MDTL: Multi-domain transfer learning (MDTL) is pro-
posed in the study of [13], including components of multi-
domain transfer feature selection (MDTFS) and multi-
domain transfer classification (MDTC). The training data are 
from both the target domain and multi-auxiliary domains. 
MDTFS is used for feature selection and then MDTC is used 
for classification.

The SVM is implemented using the LIBSVM1 toolbox 
with a linear kernel and a default value for the parameter 
C = 1 . For Lasso, MTFS, sgLasso, and cFSGL methods, 
we adopt the MALSAR toolbox to solve the optimization 
problem. There are multiple regularization parameters of 
the above methods (apart from SVM) to be optimized. All 
regularization parameters of these methods are chosen from 
the range of Ω2 by a nested tenfold cross-validation on the 
training data. Before training models, we normalized fea-
tures by following the study of [14].

For hyperparameter learning of our proposed 
MaDTL method, we employ a hierarchical optimization 

method-based grid search to search the optimal parameters, 
as used in our previous work [30]. Specifically, we first opti-
mize the regularization parameter �1 , while we fix default 
values ( �2 = 1,w1 = 0.5,w2 = w3 = w4 = w5 = w6 = 0.1 ) 
for other seven parameters, and then we optimize the param-
eter �2 with the optimized parameter �1 and the fixed default 
values for other six parameters ( w1,… ,w6 ). Then, we suc-
cessively optimize those remaining parameters by the afore-
mentioned way and iterate this process t  (with the default 
setting of t  as 10 in this paper) times until the values of 
classification accuracy stop changing. In addition, the range 
of regularization parameters is Ω ( �1, �2 ∈ Ω ), and the range 
of six weight parameters ( w1,… ,w6 ) is P = {−1 ∶ 0.01 ∶ 1}.

Results

In this section, we first provide experimental results of com-
parison between MaDTL and related state-of-the-art meth-
ods, then provide results of comparison between MaDTL 
and its variant methods, and for evaluating the effect of 
multi-auxiliary domains we provide classification results in 
which we use different numbers of auxiliary domains in the 
process of training the MaDTL model, the last is the perfor-
mance of discriminative feature detection, and list experi-
mental results of selected features.

Comparison between MaDTL and other methods

To evaluate the classification performance on the diagno-
sis of MCI conversion with the MaDTL model, we employ 
several state-of-the-art related methods and run these meth-
ods on our used dataset in this paper, and the classification 
results are listed in Table 1. Specifically, these related meth-
ods include SVM, MKSVM [14], MTFS [37], cFSGL [36], 
Lasso [47], sgLasso [41], rMLTFL [2], and MDTL [13]. 
Note that each value in Table 1 is the averaged result of the 
tenfold cross-validation 10 times. Also, to further evaluate 

Table 1  Comparison of our 
proposed MaDTL method and 
eight state-of-the-art methods 
(SVM, MKSVM, Lasso, MTFS, 
sgLasso, cFSGL, MDTFS, 
rMLTFL) for diagnosis of MCI 
to AD conversion (mean ± std)

ACC , accuracy; SEN, sensitivity; SPE, specificity; AUC , area under the receiver operating characteristic 
curve.

Method ACC % SEN % SPE % AUC % p-value

SVM 66.60 ± 2.12 62.63 ± 2.40 69.80 ± 1.91 71.33 ± 0.94  < 0.00001
MKSVM 69.11 ± 1.53 65.45 ± 1.76 72.06 ± 1.36 73.51 ± 0.71  < 0.00001
MTFS 70.67 ± 2.11 67.18 ± 2.38 73.48 ± 1.90 76.75 ± 1.27  < 0.00001
cFSGL 70.71 ± 2.37 67.23 ± 2.67 73.51 ± 2.13 76.57 ± 1.23  < 0.00001
Lasso 73.24 ± 2.19 70.18 ± 2.51 75.71 ± 1.95 80.32 ± 1.48  < 0.0001
sgLasso 74.51 ± 1.70 71.48 ± 1.96 76.95 ± 1.50 82.14 ± 1.06  < 0.0001
rMLTFL 75.07 ± 1.98 72.11 ± 2.26 77.45 ± 1.77 79.37 ± 0.82  < 0.001
MDTL 76.02 ± 1.63 73.16 ± 1.85 78.33 ± 1.47 80.79 ± 1.09  < 0.001
MaDTL 80.37 ± 1.28 76.61 ± 2.74 83.39 ± 2.59 88.16 ± 0.61 -

1 https:// www. csie. ntu. edu. tw/ ~cjlin/ libsvm/
2 Ω = {0.0001, 0.0005, 0.0009, 0.001 ∶ 0.001 ∶ 0.009, 0.01 ∶ 0.01 ∶ 0.09, 0.1 ∶ 0.1 ∶ 2}

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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the availability of the MaDTL model, we use DeLong’s 
method [48] on the AUC between the proposed method 
and each of the other compared methods and list the cor-
responding p-values in Table 1. In addition, to understand 
more visually the effectiveness of the MaDTL model, we 
plot the ROC curves of all the methods in Fig. 6.

From Table 1 and Fig. 6, we have the following obser-
vations. First, the proposed MaDTL method consistently 
outperforms those eight competing methods regarding all 
measures, demonstrating the effectiveness of the MaDTL 
method for the diagnosis of MCI-to-AD conversion. Sec-
ond, our proposed MaDTL method and our previous works 
(i.e., MDTL and rMLTFL methods) are superior to other 
multi-task learning methods (i.e., MTFS, sgLasso, and 
cFSGL), which shows that modeling correlations between 
the target and the multi-auxiliary domains has the advantage 
over those multi-task learning methods that only implicitly 
utilize the relationships between tasks. Third, MaDTL con-
sistently achieves better classification performance than our 
previous works (i.e., MDTL and rMLTFL methods), sug-
gesting that the sparse group correlation Lasso penalties 
(i.e., regularization terms of ‖��‖1,1 and ‖��‖2,1 ) pro-
posed in MaDTL are more useful in promoting classification 

performance. Finally, the Lasso method without using any 
auxiliary domain data has significantly better classification 
performance than the two multi-task learning methods (i.e., 
MTFS and cFSGL) using auxiliary domain data, implying 
that the existence of several irrelevant auxiliary domains 
may cause negative effects and restrict the improvement of 
classification performance.

Comparison with MaDTL and its variants

In our proposed MaDTL model, it consists of two parts: a 
MaDTFS module for feature selection and a MaDTC module 
for classification. In order to evaluate the contributions of 
each component, we proposed two variant MaDTL methods 
(i.e., MaDTC and MaDTFS + SVM) and performed these 
variant methods on the ADNI database of 409 subjects. In 
Table 2, we list the classification results of MaDTC and 
MaDTFS + SVM methods and compare them with MaDTL 
and SVM (as a baseline method). It should be noted that 
the MaDTL method first performs MaDTFS for feature 

selection and then performs MaDTC for classification (i.e., 
MaDTFS + MaDTC), the MaDTC method only performs 
the MaDTC module without feature selection, and the 
MaDTFS + SVM method first performs the MaDTFS mod-
ule and then performs SVM for classification. For intuitive 
comparison, we also plot the ROC curves achieved by these 
methods in Fig. 7 and perform the DeLong’s test method 
[48] on AUC between the MaDTC method and its two vari-
ant methods as well as the baseline method. As we can see 
from Table 2 and Fig. 7, each component can boost the clas-
sification performance compared with the baseline SVM 
method, using our feature selection module (i.e., MaDTFS) 
can achieve better improvement than the MaDTC method for 
classification, and the MaDTL model integrates MaDTFS 
and MaDTC modules together to achieve a performance bet-
ter than that of each variant method.

In addition, there are interesting observations from 
Table 1 and Table 2. First, the MaDTC method in Table 2 
is significantly better than the MKSVM [14] method in 
Table 1, which suggests that the MaDTC method provides 
a better way than MKSVM to utilize multi-modality data 
for classification. Second, the MaDTFS + SVM method in 

Fig. 6  ROC curves of different methods for the classification of 
PMCI and SMCI subjects

Table 2  The comparison of our 
proposed method (MaDTL), its 
two variant methods (MaDTC 
and MaDTFS + SVM), and 
SVM (as a baseline method) 
(mean ± std)

Method ACC % SEN % SPE % AUC % p-value

SVM 66.60 ± 2.12 62.63 ± 2.40 69.80 ± 1.91 71.33 ± 0.94  < 0.000001
MaDTC 72.73 ± 2.10 69.64 ± 2.07 75.21 ± 2.54 78.86 ± 0.41  < 0.0001
MaDTFS + SVM 76.62 ± 2.28 73.86 ± 2.59 78.85 ± 2.03 81.64 ± 1.09  < 0.001
MaDTL(i.e., 

MaDTFS + MaDTC)
80.37 ± 1.28 76.61 ± 2.74 83.39 ± 2.59 88.16 ± 0.61 -
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Table 2 slightly outperforms the MDTL (MDTFS + MDTC) 
method in Table 1, but the p-value computed by DeLong’s 
method [48] on the AUC values between these two meth-
ods is 0.036, showing the advantage of MaDTFS + SVM 
is statistically significant. This indicates that our proposed 
regularization terms on ‖��‖1,1 and ‖��‖2,1 are more 
effective than the regularization terms (i.e., a combination of 
‖��‖2,2 , ‖�‖1,1 , and ‖�‖2,1 ) of the MDTL method for fea-
ture selection in diagnosing MCI-to-AD conversion. Third, 
the MaDTFS + SVM method is superior to the rMLTFL 
method in Table 1, and the p-value on the AUC values 
between these two methods is less than 0.01, indicating the 
significance of our proposed MaDTFS in effectively using 
multi-auxiliary domain data to improve the performance of 
the target learning domain than the rMLTFL method.

Effect of multi‑auxiliary domains

To investigate the influence of multi-auxiliary domain data 
on the performances of the MaDTL model, we further per-
formed a set of experiments by using different numbers 
of auxiliary domains in the steps of feature selection and 
classification. Specifically, we evenly select a number of 
auxiliary domain data from all auxiliary domains (i.e., five 
auxiliary domains in our work) to train the MaDTL model, 
test this process multiple times to select a certain number of 
auxiliary domains, and report the average and the standard 
deviation of accuracy, sensitivity, specificity, and AUC in 
Fig. 8. For a clear observation of the change of classifica-
tion measures, we also added the classification measures 
of the MaDTL method using all five auxiliary domains in 
Fig. 8 for reference. Since only up to five auxiliary domains 

are used in our work, there is no standard deviation of clas-
sification measures at the abscissa value of 5 in Fig. 8. To 
properly explore the effect of multi-auxiliary domain data, 
we repeated multiple times to select a given number of aux-
iliary domains for training, specifically, 5 times for selecting 
one auxiliary domain, 10 times for selecting two auxiliary 
domains, 10 times for selecting three auxiliary domains, and 
5 times for selecting four auxiliary domains. The classifica-
tion results using different numbers of auxiliary domains are 
reported in Fig. 8 and Table 3.

As can be seen from Fig. 8, with the increase of the num-
ber of auxiliary domains, the four classification measures 
(i.e., accuracy, sensitivity, specificity, and AUC) of the 
MaDTL method rise monotonically. While we select two 
and three auxiliary domains, the values of standard deviation 
are greater than those using one and four auxiliary domains. 
That is because we tested 10 times to select two and three 
auxiliary domains, greater than the testing times of select-
ing one and four auxiliary domains. In addition, this result 
also reveals that the correlations between each group of the 
multi-auxiliary and the target domains have a significant dif-
ference. This reinforces the necessity for us to develop the 
regularization terms on ‖��‖1,1 and ‖��‖2,1 , which can 
restrain irrelevant auxiliary domains that may cause nega-
tive effects for classification. In general, using more data 
from multi-auxiliary domains can effectively improve the 
performance of the target learning domain.

Discriminative feature detection

The proposed MaDTL method can identify the discrimi-
native features (corresponding to ROIs or features of CSF 
levels) that are helpful for the diagnosis of MCI-to-AD con-
version in clinical practice. Since we adopt a tenfold cross-
validation strategy with 10 times repetition to evaluate the 
effectiveness of the MaDTL model and the feature selection 
in each fold is performed only based on the current training 
set, the selected features could vary across different folds 
and runs. We counted the frequency of the selected features 
across all folds and runs (i.e., a total of 100 times for tenfold 
cross-validation with 10 independent runs) by the MaDTL 
method using the concatenated MRI and CSF biomarkers 
and listed all the most discriminative features with the high-
est frequency of occurrence (i.e., each feature is selected 
across all folds and runs) in Table 4.

From Table  4, we can observe that our proposed 
MaDTL method successfully selects discriminative fea-
tures, since the corresponding ROIs and the features of 
CSF biomarker are known to be related to the early diag-
nosis of AD [14, 25, 29, 37–39, 49]. Specifically, there are 
26 features that are consistently selected across all folds 
and all runs, and an average of 32 features are selected 
via the tenfold cross-validation 10 times. The features 

Fig. 7  ROC curves of the MaDTL method, its two variant methods, 
and SVM
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(i.e., Aβ42, t-tau, and p-tau) from the CSF biomarker are 
selected across all folds and runs, which imply that the 
biological cerebrospinal fluid levels of Aβ42, t-tau, and 
p-tau have also been changed before the appearance of 
brain atrophy; thus, the CSF biomarker is well suited to 
the diagnosis of MCI-to-AD conversion. Also, a number 
of features of brain regions (e.g., hippocampal formation, 
amygdala, uncus, and cuneus) from MRI biomarkers are 
selected across all folds and runs, which shows that a num-
ber of brain regions have shown atrophy in the stage of 
MCI. Therefore, combining MRI and CSF biomarkers is 
able to provide complementary and discriminative infor-
mation in the diagnosis of MCI-to-AD conversion. In a 
word, these observations suggest that brain structure and 

function have gradually changed with the progression of 
MCI.

Discussion

In this paper, we propose a MaDTL model to identify 
MCI-to-AD conversion patients, which can select dis-
criminative feature subsets from the target domain and 
multi-auxiliary domains and combine these data to achieve 
a robust classifier. We have evaluated the performance 
of our method on 409 baseline subjects from the ADNI 
database, and the experimental results show that our pro-
posed method can consistently and substantially improve 

Fig. 8  The changes of four classification measures (accuracy, sensitivity, specificity, and AUC) of the MaDTL method with respect to the used 
number of auxiliary domains
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the classification performance, with an overall classifica-
tion accuracy of 80.37% to differentiate PMCI and SMCI 
subjects.

Multi‑auxiliary domain transfer learning

Recently, multi-task learning, deep learning, and transfer learn-
ing are used to diagnose the MCI-to-AD conversion [2–4, 6, 
8, 10, 11, 13, 27, 29, 30, 32–35, 37, 39, 40]. Multi-task learn-
ing assumes that all these learning tasks should have a strong 
correlation and only implicitly uses this relationship to learn 
common features for all tasks. That would be limited in clinical 
practice because the links between these tasks may be weak 
correlative or irrelevant, but most of the existing multi-task 
learning studies have not sufficiently considered this case. In 
contrast, in our previous works [2, 13, 30], a transfer learning 
strategy is adopted for the early diagnosis of AD, which can 
effectively combine multiple auxiliary domains to further 
promote the performance of the target domain.

Table 3  Classification 
performances that we select the 
different number of auxiliary 
domains in the process of 
training the MaDTL model

Auxiliary domain ACC % SEN % SPE % AUC %

AD vs. NC 71.39 68.14 73.99 77.15
AD vs. PMCI 72.56 69.27 75.20 77.04
AD vs. SMCI 73.39 70.43 75.78 80.90
PMCI vs. NC 73.71 70.88 76.00 79.57
SMCI vs. NC 72.01 69.23 74.26 78.00
AD vs. NC + AD vs. PMCI 73.33 69.46 76.46 79.19
AD vs. NC + AD vs. SMCI 73.63 69.93 76.61 80.30
AD vs. NC + PMCI vs. NC 75.44 69.80 80.00 80.72
AD vs. NC + SMCI vs. NC 73.63 71.66 75.23 77.46
AD vs. PMCI + AD vs. SMCI 76.27 74.32 77.83 83.41
AD vs. PMCI + PMCI vs. NC 74.10 69.71 77.63 80.12
AD vs. PMCI + SMCI vs. NC 71.78 66.36 76.15 76.92
AD vs. SMCI + PMCI vs. NC 74.06 71.34 76.24 79.33
AD vs. SMCI + SMCI vs. NC 75.41 72.46 77.79 80.69
PMCI vs. NC + SMCI vs. NC 74.91 72.11 77.18 80.97
AD vs. NC + AD vs. PMCI + AD vs. SMCI 77.99 76.29 79.34 85.60
AD vs. NC + AD vs. PMCI + PMCI vs. NC 75.54 71.73 78.64 80.60
AD vs. NC + AD vs. PMCI + SMCI vs. NC 72.79 68.68 76.10 77.14
AD vs. NC + AD vs. SMCI + PMCI vs. NC 75.70 73.55 77.45 80.66
AD vs. NC + AD vs. SMCI + SMCI vs. NC 74.68 71.18 77.50 79.14
AD vs. NC + PMCI vs. NC + SMCI vs. NC 77.58 72.95 81.33 83.70
AD vs. PMCI + AD vs. SMCI + PMCI vs. NC 75.56 69.86 80.14 80.83
AD vs. PMCI + AD vs. SMCI + SMCI vs. NC 74.22 71.82 76.16 79.61
AD vs. PMCI + PMCI vs. NC + SMCI vs. NC 75.78 71.75 79.04 80.52
AD vs. SMCI + PMCI vs. NC + SMCI vs. NC 76.26 72.70 79.14 82.71
AD vs. NC + AD vs. PMCI + AD vs. SMCI + PMCI vs. NC 79.17 77.73 80.34 85.16
AD vs. NC + AD vs. PMCI + AD vs. SMCI + SMCI vs. NC 78.38 74.23 81.71 83.83
AD vs. NC + AD vs. PMCI + PMCI vs. NC + SMCI vs. NC 77.49 73.14 81.01 82.62
AD vs. NC + AD vs. SMCI + PMCI vs. NC + SMCI vs. NC 77.88 73.11 81.74 85.21
AD vs. PMCI + AD vs. SMCI + PMCI vs. NC + SMCI vs. NC 78.70 75.93 80.94 86.05

Table 4  The most discriminative features identified by the proposed 
MaDTL method

Features (brain regions)

Parahippocampal gyrus left Perirhinal cortex left

Angular gyrus right Entorhinal cortex left
Uncus right Hippocampal formation left
Fornix left Middle temporal gyrus right
Precuneus right Corpus callosum
Hippocampal formation right Amygdala right
Inferior occipital gyrus left Inferior temporal gyrus right
Cuneus left Lateral occipitotemporal gyrus left
Supramarginal gyrus right Thalamus right
Uncus left Occipital pole left
Middle temporal gyrus left Aβ42

Precentral gyrus left t-tau
Perirhinal cortex right p-tau
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The research of this paper is to improve and extend our 
previous works [13, 30], and the feature learning and clas-
sification models are different from our previous works [13, 
30]. Specifically, the significant differences between this 
work and our previous works are summarized as follows. 
First, multi-auxiliary domains are used in this paper, but only 
a single auxiliary domain was used in our previous work [13, 
30]. Second, our current study considers possible weak cor-
relative or irrelevance between auxiliary multi-domains and 
the target domain, but our previous work [13, 30] assumed 
that auxiliary domains have consistent relevance to the target 
domain. In addition, our previous works [13, 30] employed 
a conventional sparse group Lasso penalty (i.e., ‖�‖1,1 and 
‖�‖2,1 ) for feature selection, and, according to prior knowl-
edge of AD pathology, the current study proposed a group 
correlation Lasso penalty ( ‖��‖1,1 and ‖��‖2,1 ) for feature 
selection. Results in Tables 1 and 2 show that our proposed 
group correlation Lasso penalties on ‖��‖1,1 and ‖��‖2,1 
are more effective than the conventional sparse group Lasso 
penalties ( ‖�‖1,1 and ‖�‖2,1 ) for selecting features for the 
diagnosis of MCI-to-AD conversion.

In the step of classification, our previous works [13, 30] 
employed the technique of adaptive SVMs to build the clas-
sifier, which is sensitive to the negative effects from a few 
irrelevant auxiliary domains. However, according to the 
ensemble learning strategy, our current study proposes a 
MaDTC module for classification, and we employ the con-
ventional SVM to train base classifiers on each auxiliary 
domain and the target domain. To mitigate the negative 
effects from a few irrelevant auxiliary domains, we extend 
the restricted condition of conventional voting with the lin-
ear weighting method. Different from our previous works 
[13, 30], theoretically, the MaDTC module can employ any 
classifier to build the base classifiers while using SVMs 
would achieve better performance. For validation, we test 
the method of the previous work [13] to classify PMCI and 
SMCI subjects without any feature selection and achieve a 
classification accuracy of 70.03% and AUC of 74.64%, both 
of which are inferior to our proposed MaDTC module with 
a classification accuracy of 72.73% and AUC of 78.86%. A 
statistic test verified such a difference is significant accord-
ing to the p-values that are less than 0.01. In general, our 
proposed MaDTC module can significantly improve our pre-
vious works [13, 30] to recognize PMCI and SMCI subjects.

In our MaDTL model, there are eight hyperparameters 
( �1, �2,w1,… ,w6 ) to be optimized. For simplicity, we 
employed a hierarchical optimization method-based grid 
search for hyperparameter optimization. To demonstrate the 
convergence of the algorithm, we plot a broken line graph 
of classification accuracy and AUC values with respect to a 
different number of iterations using the iterative optimiza-
tion algorithm in Fig. 9. In Fig. 9, classification accuracy 
and AUC values first rise with the increasing number of 

iterations and then kept stable when the number of iterations 
is larger than 6, which can be proven by the convergence 
of hierarchical optimization algorithm-based grid search. 
In addition, we need to further evaluate the contribution of 
each operator term for the MaDTL model. In Table 5, we 
list the classification results of the MaDTL model by setting 
the respective parameters to 0. For instance, the regulariza-
tion parameter �1 is set as 0 ( �1 = 0 ), which can be used to 
evaluate the contribution of the first regularization term in 
the MaDTFS module, and a certain weight parameter wi is 
set as 0 ( wi = 0 ), which can be used to evaluate the con-
tribution of a certain domain data in the MaDTC module. 
These experimental results showed that each operator term 
can boost classification performance for the diagnosis of 
MCI-to-AD conversion and combining all operator terms 
can achieve better diagnosis performance.

Fig. 9  Classification accuracy/AUC of our proposed MaDTC method 
with respect to a different number of iterations, achieved by the itera-
tive optimization algorithm

Table 5  Comparison of our proposed MaDTL method using different 
settings of parameters (mean ± std)

Parameter ACC % SEN % SPE % AUC %

�1 = 0 78.77 ± 1.87 74.86 ± 3.41 81.94 ± 2.17 86.61 ± 0.47
�2 = 0 77.64 ± 1.92 75.43 ± 3.21 79.43 ± 2.43 85.51 ± 0.46
w1 = 0 76.28 ± 2.05 73.41 ± 3.92 78.59 ± 4.49 84.14 ± 1.03
w2 = 0 78.80 ± 1.54 75.63 ± 3.36 81.35 ± 1.91 87.55 ± 0.32
w3 = 0 78.84 ± 1.44 71.43 ± 2.87 84.86 ± 3.05 86.89 ± 0.56
w4 = 0 78.27 ± 1.83 71.55 ± 5.03 83.69 ± 2.55 85.25 ± 0.62
w5 = 0 77.29 ± 1.16 72.27 ± 2.34 81.33 ± 1.68 85.81 ± 0.57
w6 = 0 78.12 ± 1.82 70.14 ± 2.71 84.61 ± 3.53 86.91 ± 1.97
All 80.37 ± 1.28 76.61 ± 2.74 83.39 ± 2.59 88.16 ± 0.61
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In the MaDTL model, the weight wi represents how one 
domain can be important. We compute the mean values of 
the weight wi across all folds and runs and list all mean 
values of weight wi (i.e., w1(0.16), w2(− 0.23), w3(− 0.02), 
w4(0.51), w5(0.56), and w6(0.02)). These reported values 
of weight are optimized by the hierarchical optimization 
method-based grid search method on training data. Accord-
ing to the mean values of weightwi , weight w4 and weight w5 
are better than the other four mean values of weight, which 
shows the importance of auxiliary domains (AD vs. SMCI 
and PMCI vs. NC); weight w2 and w3 are negative, which 
suggests negative transfer appeared at the use of auxiliary 
domains (AD vs. NC and AD vs. PMCI); weight w4 and w5 
are better than weightw1 , which implies auxiliary domains 
(AD vs. SMCI and PMCI vs. NC) can provide more use-
ful decision information than the target domain (PMCI 
vs. SMCI). However, in Table 3, without use of auxiliary 
domains (AD vs. NC and AD vs. PMCI) cannot achieve 
better performance than the use of all auxiliary domains, 
which shows the combination of more training data from 
multi-auxiliary domains can provide more complementary 
inter-domain information. These experimental results con-
firm that the use of more training data from multi-auxiliary 
domains is useful to the diagnosis of MCI-to-AD conversion.

Extension for classifying AD/NC, AD/PMCI, 
and SMCI/NC

In the early diagnosis of AD, the recognition of MCI-to-AD 
conversion is becoming more and more important. There-
fore, we only report classification results of classifying 
SMCI and PMCI subjects in Table 1. To further investigate 
the effectiveness of our proposed MaDTL model, we also 
apply our model to classify AD vs. NC, AD vs. PMCI, and 
SMCI vs. NC. Specifically, each target domain corresponds 
to the learning task of classifying AD vs. NC, AD vs. PMCI, 

or SMCI vs. NC, and the rest of the domains are used as 
multi-auxiliary domains. In Table 6, we provide two sig-
nificant performance measurements (i.e., ACC and AUC) 
and the p-value that is computed by DeLong’s method [48] 
on the AUC between the proposed model and competing 
methods.

As can be seen from Table 6, our proposed MaDTL 
model consistently outperforms those competing methods 
regarding all measurements to classify AD vs. NC, AD vs. 
PMCI, and SMCI vs. NC. Compared with the tasks of clas-
sifying AD vs. NC and SMCI vs. NC, performance improve-
ments in classifying AD vs. PMCI with the MaDTL model 
are more protruded. Specifically, compared with the SVM 
method, the use of the MaDTL model can achieve almost 
15% and 10% improvements of accuracy for classifying AD 
vs. PMCI and SMCI vs. NC, and almost 6% improvement 
of accuracy for classifying AD vs. NC. These experimen-
tal results further verify the effectiveness of our proposed 
MaDTL model in diagnosing MCI conversion.

Limitations

The current study is limited by several factors. First, there 
are six weight parameters in the MaDTC model, which 
also takes more time to tune parameters and restricts more 
auxiliary domain data to be added. In our future work, we 
will improve the MaDTC model in order to introduce more 
data from auxiliary domains conveniently. Second, many 
data from status-unlabeled subjects can be available from 
the ADNI database, and we can extend our current method 
to use unlabeled subjects. We will also investigate whether 
adding status-unlabeled data can further improve the per-
formance. Third, for the preprocessing of MR images, our 
current study only uses ROI features, while previous stud-
ies have shown the effectiveness of cortical thickness in the 
early diagnosis of AD [49–54]. In fact, considering the small 
number of training samples, as well as the sensitivity of 

Table 6  Comparison of our proposed method (MaDTL) and eight state-of-the-art methods in classifying AD vs. NC, AD vs. PMCI, and SMCI 
vs. NC. (mean ± std)

Method AD vs. NC SMCI vs. NC AD vs. PMCI

ACC % AUC % p-value ACC % AUC % p-value ACC % AUC % p-value

SVM 90.52 ± 1.23 96.53 ± 0.38  < 0.0001 67.84 ± 2.11 71.33 ± 1.51  < 0.0001 58.44 ± 2.05 61.12 ± 1.64  < 0.0001
MKSVM 90.01 ± 1.28 96.20 ± 0.34  < 0.0001 70.02 ± 1.83 72.98 ± 1.18  < 0.0001 61.04 ± 1.82 62.17 ± 1.81  < 0.0001
MTFS 92.69 ± 0.72 97.57 ± 0.31  < 0.001 70.85 ± 1.12 74.96 ± 0.72  < 0.0001 63.38 ± 1.85 66.38 ± 1.26  < 0.0001
cFSGL 92.03 ± 1.32 97.45 ± 0.42  < 0.001 73.27 ± 1.12 78.75 ± 0.88  < 0.001 66.59 ± 1.69 70.10 ± 1.05  < 0.001
Lasso 90.90 ± 1.11 96.51 ± 0.38  < 0.0001 68.25 ± 2.01 71.34 ± 1.76  < 0.0001 60.31 ± 1.65 62.40 ± 1.91  < 0.0001
sgLasso 94.12 ± 1.15 98.34 ± 0.32  < 0.01 73.20 ± 1.20 77.37 ± 0.64  < 0.001 67.57 ± 1.66 73.03 ± 0.98  < 0.001
rMLTFL 92.52 ± 0.62 97.47 ± 0.30  < 0.001 74.02 ± 1.50 80.84 ± 0.91  < 0.001 67.97 ± 2.06 73.14 ± 1.18  < 0.001
MDTL 93.93 ± 1.37 98.49 ± 0.30  < 0.01 75.06 ± 0.91 79.41 ± 0.59  < 0.01 69.11 ± 2.96 76.86 ± 2.42  < 0.001
MaDTL 96.45 ± 0.64 99.11 ± 0.36 - 77.85 ± 1.23 82.08 ± 0.48 - 73.34 ± 2.26 81.53 ± 1.33 -
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those very local features (i.e., thickness and tissue density) 
to noises, as well as errors in processing pipeline (including 
skull stripping, tissue segmentation, image registration, and 
region-of-interest (ROI) labeling), our current study consid-
ers only using the mid-level features, such as regional fea-
tures (or ROI features), and no surface-based cortical thick-
ness features are extracted. It is interesting to take advantage 
of both cortical thickness features extracted from MR images 
and the ROI-based features for MCI-to-AD conversion pre-
diction in the future.

Conclusion

In this paper, we propose a novel multi-auxiliary domain 
transfer learning (MaDTL) model for the diagnosis of 
MCI-to-AD conversion, which can select the discriminative 
feature subset from the target domain and multi-auxiliary 
domains and combine data from multi-auxiliary domains 
and target domain to achieve a robust classifier. The main 
idea of our method is to exploit data from multi-auxiliary 
domains to improve classification performance in the target 
domain. Specifically, we first develop a MaDTFS module to 
select the discriminative feature subset. Then, we propose a 
MaDTC module to train a robust classifier that can restrain 
negative effects from a few irrelevant auxiliary domains. 
We evaluate our model on the baseline ADNI database with 
MRI and CSF data, and the experimental results demonstrate 
the effectiveness of our MaDTL model.
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